eo_logo
 
Product added to cart

M39 x 0.50 Machine Vision Mounted Linear Glass Polarizing Filter

×
Stock #21-426 3-4 days
×
Quantity Selector - Use the plus and minus buttons to adjust the quantity. +
€84,00
Qty 1-9
€84,00
Qty 10+
€79,80
Volume Pricing
Request Quote
Prices shown are exclusive of VAT/local taxes
Get Product Downloads

Product Details

Type:
Mounted Imaging Filter

Physical & Mechanical Properties

Clear Aperture CA (mm):
34.00
Diameter (mm):
41.00
Construction:
Black Anodized Aluminum

Optical Properties

Coating:
Hardcoated
Extinction Ratio:
up to 3000:1 @ ~600nm (nominal)
Surface Quality:
40-20
Wavelength Range (nm):
400 - 700

Threading & Mounting

Filter Thread:
M39 x 0.50
Mount Thickness Including Threads (mm):
9.6

Regulatory Compliance

RoHS:
Certificate of Conformance:
REACH 241:

Product Family Description

  • Up to 3000:1 Extinction Ratio (nominal) @ ~600nm
  • Mounted in a Rotating, Locking Housing
  • 40-20 Surface Quality

Mounted Machine Vision Glass Linear Polarizers feature a rotatable threaded mount with a wide range of common machine vision threads from M22 to M105. A locking thumbscrew allows the polarizer to maintain its orientation in the event of vibrations or accidental movement in a system. In addition to polarizing incident unpolarized light, these linear polarizers can be used to greatly reduce specular glare and hot spots from reflective surfaces, smooth surfaces, or surfaces covered with grease, oil, or liquid. Mounted Machine Vision Glass Linear Polarizers are ideal for machine vision applications in manufacturing, industrial, and laboratory environments.

Filter

Introduction to Polarization

Is polarization a new topic for you? Learn about key terminology, types, and more information to help you understand polarization at Edmund Optics.

View Now

Laser-Cut Polymer Polarizer and Retarder Quote Tool

Polymer Polarizers and Retarders

Polymer polarizers and retarders, consisting of sheets of polyvinyl alcohol and TAC cellulose triacetate, alter the polarization of light.

View Now

Polarizer Selection Guide

Edmund Optics' Polarizer Selection Guide refines your search for a specific type of polarizer.

View Now

Understanding Waveplates and Retarders

Waveplates (retarders) are different when used in polarized light than unpolarized light. Consider terminology, fabrication, or applications at Edmund Optics.

View Now

How Do 3D Movies Work? Polarization

Optical Engineer Katie Schwertz explains how 3D movies work because of polarization in a kid-friendly way.

View Now

Polarization Overview - Part 1: Polarization Basics

Polarizers are optical components designed to filter, modify, or analyze the various polarization states of light.

View Now

Polarization Overview - Part 2: Waveplates & Retarders (Advanced)

Waveplates and retarders are optical components designed to transmit light while modifying its polarization state without attenuating, deviating, or displacing the beam.

View Now

You offer many types of polarizers. What are some key benefits to help me decide which is best for my application?

Are the polarizers shipped with a protective film?

What is the difference between s- and p-polarization states?

What are the meanings for the different terms used for polarizers?

How can I tell what the polarization axis is for a linear polarizer?

When you list the average transmission of a polarizer, what is the difference between single, parallel, and crossed?

I have a linear polarizer glass filter and would like to create circularly polarized light. What type of optics do I need for this?

What is the maximum amount of light a polarizer can transmit?

Does the circular polarizer material have to face a particular direction?

What is the fast and slow axis of a retarder and how do they differ?

How can I find the fast and slow axes of a retarder?

What is the difference between multiple and zero-order retarders and when should I pick one over the other?

How can I determine if a retarder is quarter or half wave?

Can I adapt a retarder for use with a specific wavelength other than the design wavelength?

What is the benefit of polymer retarders?

Analyzer

Birefringence

Circular Polarizer

Polarization

Polarizer

Polarizing Efficiency

P-Polarization

Retardance

Retarder (Waveplate)

S-Polarization

Unpolarized

Wire Grid Polarizer

Imaging System Parameter Calculator

Imaging Lens Selector

Contrast

Is the definition on your image not clear? Go back to the basics and learn more about the contrast of an image and its importance at Edmund Optics.

View Now

Lens Mounts

There are numerous mount types for connecting an imaging lens to a camera. Depending on the application, some mounts are more useful than others.

View Now

System Throughput, f/#, and Numerical Aperture

When it comes to your lens, the f/# is one of the most important settings because it controls multiple parameters. Find out what the f/# controls at Edmund Optics.

View Now

Cameras

Are you new to imaging or looking for a refresh on camera types? Learn about the advantages to camera types, digital interfaces, and more at Edmund Optics.

View Now

Optotune Focus-Tunable Lenses Review

Optotune Focus-Tunable lenses feature a liquid polymer substrate with continuous focusability.

View Now

How an Edmund Optics Imaging Lens is Made

Imaging lens assemblies are vital components for a wide range of cutting edge applications including machine vision, biomedical instruments, factory automation, and robotics.

View Now

Lens Selection Guide, Part 2

The makings of a successful imaging lens, Part Three: Testing and metrology, ensuring you get what you asked for

The makings of a successful imaging lens, Part Two: Performance-based specifications and their design considerations

The makings of a successful imaging lens, Part One: Application and specification development

Vision & Sensors Lens Selection Guide, Part 1

Which type of colored filter is best for my imaging application?

Focal Length Extender

Successful Light Polarization Techniques

Are you looking for a solution to common imaging problems? Discover different polarization techniques to improve your image at Edmund Optics.

View Now

Polarization Directed Flat Lenses Product Review

Polarization Directed Flat Lenses, which are formed with polymerized liquid crystal thin-film, create a focal length that is dependent on polarization state.

View Now

Polarizers Review

Polarizers are used in a wide range of imaging and research and development applications.

View Now

Does the polarization of light change after reflecting off a mirror?

Do diffusers affect the polarization of light?

Does the polarization of light change when it passes through a beamsplitter?

I would like to split light from a circularly polarized laser source into two beams. What happens when it passes through a cube beamsplitter – both non-polarizing and polarizing?

Does light entering a multimode fiber undergo a polarization change during propagation through the fiber? If so, can the emerging light be linearly polarized by placing a polarizer at the fiber’s output end?

Why does the polarization of a laser matter?

The polarization state of a laser source is important for many different applications.

View Now

Extinction Ratio

Non-Polarizing Beamsplitter

Polarizing Beamsplitter

Best Practices for Better Imaging

Do you use imaging systems constantly in your professional field? Learn top tips for improving your imaging system and practices at Edmund Optics.

View Now

What is Imaging?

In imaging, light rays are mapped from an object onto an imaging sensor by an imaging lens, to reproduce the characteristics and likeness of the object for the purposes of inspection, sorting, or analysis.

View Now

Edmund Optics Imaging Lab 1.1: Field of View

Learn how to specify imaging system components.

View Now

Edmund Optics Imaging Lab 1.2: Working Distance

Edmund Optics Imaging Lab 1.5: Sensor Size

Learn how to specify imaging system components.

View Now

LIGHT TALK - EPISODE 1: Machine Vision Trends with Nick Sischka

Join our discussion around machine vision trends including such as increasing resolution and new sensors in the first episode of our LIGHT TALKS series.

View Now

Optical Microscopy Application: Differential Interference Contrast

Differential interference contrast (DIC) is one of the polarization techniques that can be used in optical microscopy. Learn about this technique at Edmund Optics.

View Now

Contrast

Spatial Frequency

Resolution and Contrast Comparison

Learn how Edmund Optics maintains optical performance across the entire image plane through this resolution and contrast comparison using our C Series FFL lens.

View Now

Edmund Optics Imaging Lab 1.4: Depth of Field

Learn how to specify imaging system components.

View Now

Edmund Optics Imaging Lab 1.7: Contrast In Depth

Learn how to specify imaging system components.

View Now

Modulation Transfer Function (MTF)

Nyquist Limit

Resolution

Resolving Power

Resolution

Do you want to understand how a lens works? To do so, you must learn key terms for how the lens functions, including resolution. Find out more at Edmund Optics.

View Now

Edmund Optics Imaging Lab 1.3: Resolution

Learn how to specify imaging system components.

View Now

Edmund Optics Imaging Lab 1.6: Resolution In Depth

Learn how to specify imaging system components.

View Now

Edmund Optics Imaging Lab 1.8: Depth of Field in Depth

Learn how to specify imaging system components.

View Now

Edmund Optics Imaging Lab Module 2: Gauging and Measurement Accuracy Overview

Learn how to specify imaging system components.

View Now

Edmund Optics Imaging Lab 2.1: Distortion

Learn how to specify imaging system components.

View Now

Edmund Optics Imaging Lab 2.2: Telecentricity

Learn how to specify imaging system components.

View Now

Edmund Optics Imaging Lab Module 3: Illumination Overview

Learn how to specify imaging system components.

View Now

Edmund Optics Imaging Lab Module 3.1: Introduction to Illumination Concepts

Learn how to specify imaging system components.

View Now

Field of View (FOV)

Laser Polarization: The Importance of Polarization in Laser Applications

Understanding the polarization of laser light is critical for many applications, as polarization impacts reflectance, focusing the beam, and other key behaviors.

View Now