eo_logo
 
Product added to cart

HOLO/OR Diffractive Beam Shapers

HOLO/OR Diffractive Beam Shapers

×
  • Shape Gaussian Beams to Top-Hat Profile
  • Square Output Shape with Uniform Intensity
  • Designs for 532nm Nd:YAG Lasers
  • Compatible with Single Mode Beams

Common Specifications

Thickness (mm):
3.00 ±0.1
Coating:
Laser V-Coat (532nm)
Design Wavelength DWL (nm):
532
Substrate:
Fused Silica (Corning 7980)
Output Shape:
Square
Damage Threshold, Reference:

Products

 Title  Compare  Stock Number  Price Buy
532nm, 25.4mm Dia., Top-Hat Diffractive Beam Shaper
532nm, 20mm Dia., Stable Top-Hat Diffractive Beam Shaper

Product Details

HOLO/OR Diffractive Beam Shapers are diffractive optical elements (DOE) that transform laser beams with a nearly-Gaussian profile into a defined 2D shape with uniform intensity distribution at the focal point of a lens. These diffractive beam shapers are available in two types, top-hat or stable top-hat. Top-hat beam shapers have a larger transfer region but better defocus behavior compared to stable top-hat beam shapers. HOLO/OR Diffractive Beam Shapers are used in materials processing applications, including laser cutting, scribing, and ablation, as well as illumination applications such as wafer inspection and lithography.

Note: Diffractive optical elements are not intended for use outside of their design wavelength. Diffractive optical elements will have decreased performance if their surfaces become dirty from oil or other substances. It is recommended to always use gloves or finger cots when handling these optics.

Edmund Optics offers a range of diffractive optical elements from HOLO/OR for laser applications, including:

  • Diffractive Diffusers: used to convert an input laser beam to a defined shape with homogenized distribution
  • Diffractive Beamsplitters: used to split an input laser beam into a 1D array or 2D matrix output
  • Diffractive Beam Shapers: used to transform a nearly-Gaussian laser beam into a defined shape with uniform flat top intensity distribution
  • Diffractive Beam Samplers: used to transmit an input laser beam while producing two higher order beams that can be used to monitor high power lasers
  • Diffractive Axicons: used to transform an input laser beam to a Bessel beam that can be focused to a ring
  • Diffractive Vortex Phase Plates: used to convert a Gaussian profile beam to a donut-shaped energy ring

Technical Information

Resources

Filter

Understanding and Specifying LIDT of Laser Components

Laser induced damage threshold (LIDT) denotes the maximum laser fluence an optical component can withstand with an acceptable amount of risk.

View Now

Gaussian Beams Calculator

Laser Beam Shaping Overview

Learn how to navigate the many available options for shaping the irradiance profile and phase of laser beams to maximize your laser system's performance.

View Now

Aligning AdlOptica πShaper

Learn how to align an AdlOptica πShaper from Edmund Optics, which converts input Gaussian laser beams to flat top profiles with nearly 100% efficiency.

View Now

Flat-top laser beams: Their uses and benefits

Why Use a Flat Top Laser Beam?

Converting a Gaussian laser beam profile into a flat top beam profile can have numerous benefits including minimized wasted energy and increased feature accuracy.

View Now

Aligning Mount for AdlOptica Beamshapers

Properly aligning the mechanical mount for AdlOptica laser beam shapers from Edmund Optics is critical for maximizing throughput and performance.

View Now

Gaussian Beam

Development of a Robust Laser Damage Threshold Testbed

Development of US national laser damage standard: 2020 status

Key Parameters of a Laser System

Learn the key parameters that must be considered to ensure you laser application is successful. Common terminology will be established for these parameters.

View Now

Laser Damage Threshold Testing

Testing laser induced damage threshold (LIDT) is not standardized, so understanding how your optics were tested is critical for predicting performance.

View Now

Metrology for Laser Optics

Metrology is critical for ensuring that optical components consistently meet their desired specifications, especially in laser applications.

View Now

Laser Polarization: The Importance of Polarization in Laser Applications

Understanding the polarization of laser light is critical for many applications, as polarization impacts reflectance, focusing the beam, and other key behaviors.

View Now

Laser Optics Lab Trailer

The Laser Optics Lab video series discusses laser optics concepts including specifications, coating technologies, product types, and more

View Now

Introduction to Laser Optics Lab

The Laser Optics Lab video series discusses laser optics concepts including specifications, coating technologies, product types, and more

View Now

Laser Optics Lab:Back Reflections

Back reflections are created when some or part of your beam are reflected back to the source.

View Now

Laser Optics Lab: Coatings

Optical coatings are composed of thin-film layers used to enhance transmission or reflection properties within an optical system.

View Now

Laser Optics Lab:Specifications for Selecting a Laser

When determining which laser to use for your application, consider the following specifications: wavelength, coherence length, beam divergence, and Rayleigh range.

View Now

LIGHT TALK - EPISODE 3: Laser Damage Testing with Matthew Dabney

Join our discussion around laser damage testing in the third episode of our LIGHT TALKS series.

View Now

LIGHT TALK - EPISODE 4: Lasers & Optics with Kasia Sieluzycka and Nick Smith

Learn about trends in laser applications including increasing powers and decreasing pulse durations in this conversation with Kasia Sieluzycka and Nick Smith.

View Now

LIGHT TALK - EPISODE 8: Laser Magic! with Angi Compatangelo

From tattoo removal to diagnosing cancer, lasers can transform our lives in countless ways. Join our conversation about laser in skin care and diagnostics.

View Now

Resolving damage ambiguity and laser-induced damage threshold (LIDT) complications

The art and science of designing optics for laser-induced damage threshold

What makes laser optics different from normal optics?

Building a Mach-Zehnder Interferometer

Learn how to assemble, align, and use a Mach-Zehnder Interferometer completely out of off-the-shelf products from Edmund Optics in this detailed guide.

View Now

Laser

Laser Damage Threshold