eo_logo
 
Product added to cart

Edmund Optics®

Knowledge Center

 Verified library of trusted technical resources created by our 240+ global engineers.

Filter
Search Results for: Clearance Lasers (69)

Basics of Ultrafast Lasers

Master the fundamentals of ultrafast lasers and how to choose optics that can withstand their high powers and short pulse durations.

View Now Add to saved content

LIDT for Ultrafast Lasers

The short pulse durations of ultrafast lasers make them interact with optical components differently, impacting the optic’s laser damage threshold.

View Now Add to saved content

Fundamentals of Lasers

Lasers can be used for a variety of applications. Learn how lasers work, different elements, and the differences between laser types at Edmund Optics.

View Now Add to saved content

Characteristics of 2µm Lasers

Laser Optics for 2μm lasers require very specific types of materials such as fused silica and germanium. Learn more at Edmund Optics.

View Now Add to saved content

Quantum Cascade Lasers

Quantum cascade lasers (QCLs) are IR lasers that utilize tens or hundreds of quantum wells to decouple the emission wavelength from the bandgap energy.

View Now Add to saved content

Challenges of Specifying LIDT for CW Lasers

The LIDT of continuous wave (CW) lasers is dependent on laser power, beam diameter, and other use parameters.

View Now Add to saved content

Ultrafast Lasers – The Basic Principles of Ultrafast Coherence

Advances in laser technology have made it possible to produce pulses ranging from a few femtoseconds to tens of attoseconds. Learn more at Edmund Optics.

View Now Add to saved content

Common Laser Types

Understanding the most common laser sources, modes of operation, and gain media provides the context for selecting the proper laser for your specific application.

View Now Add to saved content

Why Laser Damage Testing is Critical for UV Laser Applications

Laser Induced Damage Threshold describes the maximum quantity of laser radiation an optic can take before damaging. Learn more at Edmund Optics.

View Now Add to saved content

Coherent® Laser Selection Guide

Compare Coherent Laser specifications with the Edmund Optics selection guide.

View Now Add to saved content

Ultrafast Dispersion

The short pulse durations of ultrafast lasers lead to broad wavelength bandwidths, making ultrafast systems especially susceptible to dispersion and pulse broadening.

View Now Add to saved content

Different Types of LIDT Specifications

Not all optical components are tested for laser-induced damage threshold (LIDT) and testing methods differ, resulting in different types of LIDT specifications.

View Now Add to saved content

Laser Power Density versus Energy Density

Power density, energy density, fluence, and irradiance are often incorrectly used in laser optics applications. Learn the correct definitions and usage.

View Now Add to saved content

Understanding and Specifying LIDT of Laser Components

Laser induced damage threshold (LIDT) denotes the maximum laser fluence an optical component can withstand with an acceptable amount of risk.

View Now Add to saved content

Key Parameters of a Laser System

Learn the key parameters that must be considered to ensure you laser application is successful. Common terminology will be established for these parameters.

View Now Add to saved content

Simplifying Laser Alignment

Many challenges can arise when aligning a laser beam; knowing specific tips and tricks can help simplify the process. Learn more at Edmund Optics.

View Now Add to saved content

Multiphoton Microscopy

Multiphoton microscopy is ideal for capturing high-resolution 3D images with reduced photobleaching and phototoxicity compared to confocal microscopy.

View Now Add to saved content

Laser Polarization: The Importance of Polarization in Laser Applications

Understanding the polarization of laser light is critical for many applications, as polarization impacts reflectance, focusing the beam, and other key behaviors.

View Now Add to saved content

UV vs. IR Grade Fused Silica

UV grade fused silica is ideal for UV and visible applications, but IR grade fused silica has better transmission in the IR due to a lack of OH- impurities.

View Now Add to saved content

Why Use a Flat Top Laser Beam?

Converting a Gaussian laser beam profile into a flat top beam profile can have numerous benefits including minimized wasted energy and increased feature accuracy.

View Now Add to saved content

Highly Reflective Coatings

Highly reflective (HR) coatings are applied to optical components to minimize losses when reflecting lasers and other light sources.

View Now Add to saved content

Homogeneity and Scatter from Inclusions and Bubbles

Inhomogeneity and scatter from inclusions and bubbles in optical components can lead to worse performance, especially in laser optics applications.

View Now Add to saved content

Laser Beam Expanders

Laser beam expanders are critical for reducing power density, minimizing beam diameter at a distance, and minimizing focused laser spot size.

View Now Add to saved content

High Laser Damage AR Coatings

Laser optics high reflectivity mirrors meet exceptional specifications that Edmund Optics' competitors often fail to meet. Learn more at Edmund Optics.

View Now Add to saved content

Absorption in Laser Optics

Light is absorbed in optical media through several methods including exciting electrons to higher energy states and converting to thermal energy

View Now Add to saved content

Subsurface Damage

Subsurface damage in optical components can lead to increased absorption and scatter, reducing system performance.

View Now Add to saved content

Highly-Dispersive Mirrors

Ultrafast highly-dispersive mirrors are critical for pulse compression and dispersion compensation in ultrafast laser applications, improving system performance.

View Now Add to saved content

Laser Resonator Modes

The length of a laser resonator determines the laser’s resonator modes, or the electric field distributions that cause a standing wave in the cavity.

View Now Add to saved content

Bulk Laser Damage in Glass

Learn why the bulk laser-induced damage threshold (LIDT) of glass is significantly different than the LIDT optical components with coatings, such as AR thin films.

View Now Add to saved content

The Complexities of High-Power Optical Coatings

Want to know more about high-power optical coatings? Find out more about the importance, fabrication, and testing at Edmund Optics.

View Now Add to saved content